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1. INTRODUCTION 
 

The diffusion equation can be solved analytically for simple geometries and 
material compositions such as homogeneous reactors.  More complex reactor designs 
involve multiple regions of different compositions such as core regions with fissile 
materials and reflector regions with scattering materials.  This suggests the discretization 
of the diffusion equation in the spatial variable at specified mesh points and the use of 
computers to solve the ensuing linear system of equations for the magnitude of the flux at 
4each mesh point, as well as the corresponding eigen-value which is the effective 
multiplication factor. 
 
2. THE ONE GROUP DIFFUSION EQUATION 
 
 Multi-group diffusion theory problems involve a calculation in the spatial variable 
for each group of neutrons.  To study the treatment of the spatial variable, we thus 
concentrate on the treatment of the one-group diffusion equation: 
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where we explicitly account for the spatial dependence of the diffusion coefficient D, the 
macroscopic absorption cross section )(raΣ , the macroscopic fission cross section 

)(rfΣ , and the neutron flux )(rφ . 
 The factor k is here the eigen-value belonging to the fundamental eigen-vector 

)(rφ .  If k > 1, the system is supercritical, since the neutron production must be reduced 
for the neutron balance to be valid. If k = 1, then the losses of neutrons are equal to the 
production rate and the system is critical.  If k < 1, the system is subcritical.  Thus k can 
be identified as the effective multiplication factor of the multiplying system. 
 In addition to Eqn. 1, we must satisfy the boundary condition that the neutron flux 
vanishes at the extrapolated boundary of the system: 
 
  ( ) ( 0.71 ) ( ) 0tr eR d R Rφ φ λ φ+ = + = =     (2) 
 
where R is the reactor’s core radius in spherical geometry, and trλ  is the transport mean 
free path. 
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3. ANALYTICAL EXPRESSION FOR THE MULTIPLICATION 
FACTOR 
 
 In spherical geometry Eqn. 1 becomes: 
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 For a homogeneous reactor, 
 

D(r) = D =constant, 
aΣ  , fΣ  = constant, 

 
and Eqn. 3 simplifies to: 
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If we let: 
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Substituting in Eqn. 4, we get: 
 

0][12122112 3232

2

2 =Σ−
Σ

+−+++−
r
u

kDr
u

dr
du

rr
u

dr
rd

rdr
du

r a
ffν

 

 
Upon cancellation of terms, we get: 
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Equation 6 has a solution: 
 
    )sin()cos( BrCBrAu +=     (7) 
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From Eqn.5, the neutron flux is thus given by: 
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where the material buckling is given by: 
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Since the neutron flux must remain finite at the center of the reactor’s core at r = 

0, this implies that the constant A = 0, and: 
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At the extrapolated core boundary, Eqn. 2 applies, and we get: 
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where    tre RR λ71.0+=  
 
is the extrapolated radius. 
 
This implies that: 
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 For the fundamental mode eigenvalue, n = 1, and the geometrical buckling is 
given by: 
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 The criticality condition is obtained by equating the geometrical buckling to the 
material buckling, to the buckling in general: 
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Thus using Eqns. 9 and 13 we get: 
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from which we the criticality equation in spherical geometry as: 
 

    
2)(

e
a

ff

R
D

k
π

ν

+Σ

Σ
=      (14) 

 
 Another form for the multiplication factor k can be obtained from Eqn. 1 if we 
integrate over the reactor’s volume: 
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which is the ratio of the neutron production rate from fissions to the neutron loss rates 
due to leakage and to absorptions. 
 It was possible to obtain an exact analytical solution for )(rφ  in the case of a 
homogeneous reactor.  If the system is not homogeneous when D(r) is not a constant; 
which is the situation encountered in practice, a discretization of the spatial variable r  
becomes necessary. 
 
 4. DISCRETIZATION OF THE DIFFUSION EQUATION 
 
 We consider Eqn. 3 for discretization, and we use the “Box Integration” method 
to discretize it.  The spatial coordinate is subdivided into mesh points as shown in Fig. 1 
for spherical coordinates. 
 Around each spatial mesh point (j), one can apply neutron conservation, by 
constructing a box and integrating the diffusion equation over it.  This establishes a 
relationship between each mesh point and the adjacent ones.  We choose the j-th point to 
be lying on the interfaces between two regions. 
 The spacing between the mesh points does not have to be uniform and is given 
by: 
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Integrating Eq 3 from to yields: 2/1−jr 2/1+jr
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Integrating the leakage term we get: 
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Since the material properties can vary, particularly around interfaces, we expand 

the flux in the two integrals in a Taylor’s series in which we truncate after the second 
term: 
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If we make the approximations: 
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the integral is approximately equal to: 
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where we used approximation: 
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In the case where:  
   )()( +− Σ≅Σ jaja rr , 
 
which applies to all the points except at the interfaces, we get: 
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and: 
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The same relationship holds for the source integral: 
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Substituting in Eq. 18 we can write: 
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We can now approximate the derivatives by forward first order difference equations: 
 

   
1

1)()()(

2/1 −

−

∆

−
≅⎥⎦

⎤
⎢⎣
⎡

− j

jj

r r
rr

dr
rd

j

φφφ     (24) 

 

   
1

1 )()()(

2/1 −

+

∆

−
≅⎥⎦

⎤
⎢⎣
⎡

+ j

jj

r r
rr

dr
rd

j

φφφ     (25) 

 
Inserting Eqns. 24 and 25 into Eqn. 21, we get: 
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At an interface the last two terms are replaced by their equivalents from Eq.20 as: 
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Thus we have two finite difference equations relating the mesh points, one 

applying for interface points, and one for non-interface points. 
Combining the terms in 1−jφ , jφ  and 1+jφ  we can now write the finite 

difference equations for the mesh points: 
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If we expand Eqns. 28, and set 01 =+Nφ .0 as the boundary condition, we get the 

tri-diagonal linear system: 
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 In matrix form this equation can be written as: 
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and:     1(φφ =   2φ   3φ                   )Nφ  
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The method used above is called a "three-point difference method" since the flux 

equations at three neighboring points j-1, j and j+1 are coupled to each other. 
 
5. TREATMENT OF DIFFERENT GEOMETRIES 
 
 The previous derivation is formulated for spherical geometry. For other 
geometries, the leakage term is written in general as: 
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where: 

0=γ ,  for cartesian coordinates 
1=γ ,  for cylindrical coordinates 
2=γ ,  for spherical coordinates 

 
The volume elements in each case are also given by: 
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where: 

00 =γδ ,     ∀ 0≠γ  
  1= ,      ∀ 0=γ , 

is the Kronecker delta. 
 

The 2π  or 4π  factors do not appear in the finite difference equations.  The 
volume element is a true volume element only in spherical coordinates.  In cylindrical 
coordinates it is a surface element, and it is a line element in slab geometry. 
 
6. THE BUCKLING CORRECTION FOR MULTIMENSIONAL 
SYSTEMS 
 
 The buckling correction allows accounting for three-dimensional effects in a one-
dimensional numerical calculation, by recognizing that the buckling in a given dimension 
represents neutron leakage and can be replaced by an effective absorption rate term. 
 In three dimensions and cartesian coordinates, the diffusion equation: 
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If we solve the equation in the x-direction only but wish to account for the 
neutron leakage in the y and z directions, assuming homogeneity in those directions, we 
can do this by writing: 
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Thus Eqn. 33 can be written as: 
 

   [ ] 0)()()()( 22 =
Σ

+Σ++−⎥⎦
⎤

⎢⎣
⎡ x

k
xDBB

dx
xdD

dx
d ff

azy φ
ν

φφ  

or: 
 

   0)()()( ' =
Σ

+Σ−⎥⎦
⎤

⎢⎣
⎡ x

k
x

dx
xdD

dx
d ff

a φ
ν

φφ    (35) 

 
where a modified macroscopic cross section term in cartesian coordinates is used as: 
 
    [ ]azya DBB Σ++=Σ )( 22'     (36) 
 

In cylindrical coordinates, it becomes: 
 
    [ ]aza DB Σ+=Σ 2'      (37) 
 

Thus one can compensate for the leakages that are not included in a one-
dimensional calculation by assuming homogeneity in the untreated directions. 
 
7. CRITICALITY OF BARE UNREFLECTED REACTOR CORES  
 
We consider a bare unreflected spherical reactor core with the following parameters:  
 

Radius       R = 50.0 [cm]  
Diffusion coefficient      D = 1.0 [cm]  
Macroscopic absorption cross section:   ∑

a 
= 0.75 [cm

-1
]  

Product of macroscopic fission cross  
section and neutron yield per fission:  ν∑

f 
= 0.78 [neutron.cm

-1
]  

The diffusion area of the reactor can be calculated as:  
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The geometric buckling is:   
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where we are ignoring the extrapolated distance.   
 

We rewrite Eqn. 14 as:   
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We can then calculate the infinite medium multiplication factor from Eqn. 38 as:   
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and consequently an exact analytical solution for the effective multiplication factor can 
be calculated as:   
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If the numerical code is used to calculate this value of the effective multiplication 

factor, the following input data file for a single “1” region reactor, a spherical geometry 
“2”, and a convergence factor of “0.1e-5”, and the values of the radius (R = 50.0 [cm]), 
diffusion coefficient (D = 1.0 [cm]), macroscopic absorption cross section (∑

a
 = 0.75 

[cm
-1

]), and the product of the average number of neutron per fission and macroscopic 
fission cross section (ν∑

f
 = 0.78 [neutron.cm

-1
]), and zero geometric buckling correction 

values, can be used as input values: 
 
 1 2+0.1e-05   
    50.0   
     1.0   
     0.75   
     0.78   
     0.000     0.000     0.000   
 

The numerical value for the effective multiplication value is remarkably similar to 
the earlier obtained analytical value as:   
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    ( ) 1.0345eff numericalk =  
 

Obviously such a value of the effective multiplication factor implies a 
supercritical reactor.  To obtain the value of the critical radius, one uses the criticality 
code in performing a criticality search.  By varying the value of the radius as shown in 
Fig. 2, and inverting the graph at the effective multiplication value of unity one can 
obtain from the graph a critical radius of:   
  
 
    17.77[ ]criticalR cm=  
 

 
 

Fig. 2: Effective multiplication value k
eff

 as a function of the core radius R.   
 

For this critical radius, the pointwise numerical values of the normalized flux can 
be plotted and are shown in Fig. 3.   
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Fig. 3: Normalized flux distribution for the critical core. 
 
8. CRITICALITY OF REFLECTED CORES 
 

The advantage of a numerical approach to criticality becomes apparent when one 
deals with geometries and configurations that do not easily lend themselves to the 
derivation of exact analytical solutions like in the previous case.  To demonstrate the 
usefulness of the numerical approach, we consider here the criticality of a reflected core.  
In this situation, the reactor geometry consists of two regions.  The core region contains a 
fissile material and is a multiplying medium in nature, and the outer region is a scattering 
material. 

This type of problem contains two degrees of freedom.  By varying both the 
reflector thickness and the inner core radius, one in fact obtains a three dimensional 
surface of the effective multiplication factor as a function of the core radius and the 
reflector thickness.  The critical configuration is obtained as the intersection of this 
surface with the plane representing an effective multiplication factor equal to unity.  This 
intersection can be projected on the plane of the core radius and reflector thickness 
leading to a curve describing the combination of core radius and reflector thickness that 
would make the system critical.   
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Fig. 4:.Critical core radii and reflector thicknesses for different reflector materials. 

 
If the numerical code is used to calculate this value of the effective multiplication 

factor, the following input data file for a two region “2” region reactor, a spherical 
geometry “2”, and a convergence factor of 0.1e-5, and the values of the radius (R = 8.0 
[cm]), a reflector thickness of (11 - 8 = 3 cms), diffusion coefficient in the core (D = 1.0 
[cm]), and in the reflector (D = 0.164 [cm]), macroscopic absorption cross section in the 
core (∑

a
 = 0.75 [cm

-1
]), and in the reflector (∑

a
 = 0.022 [cm

-1
]) and the product of the 

average number of neutron per fission and macroscopic fission cross section in the core 
(ν∑

f
 = 0.78 [neutron.cm

-1
]), and in the reflector (ν∑

f
 = 0.00 [neutron.cm

-1
]) and zero 

geometric buckling correction values can be used: 
 
 2 2+0.1e-05   
     8.000    11.000     
     1.000     0.164   
     0.750     0.022   
     0.780     0.000   
     0.000     0.000     0.000    
 

Using the numerical approach one can investigate for instance the effects of 
different reflectors on the criticality of a given core composition.  In Fig. 4, the critical 
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core radius and the associated reflector thicknesses using different moderators is shown.  
It can be noticed that the reflector leads to a smaller critical radius in all the choices of 
reflector materials, than the unreflected bare core.   

If light water is chosen as the reflector material, Fig. 5 shows a choice of a critical 
core radius at 8 cms, and an associated 3 cms of a water reflector.  This is much smaller 
than the critical radius of the bare core at 17.7 cms.  Figure 5 shows the normalized core 
and reflector flux distribution for light water as a reflector.   
 

 
 

Fig. 5: A choice of a critical core radius and an associated reflector thickness for 
light water as a reflecting material. 
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Fig. 6:  Normalized core and reflector flux distribution for light water as a reflector.   
 

EXERCISES 
 
1. Calculate analytically the effective multiplication factor for a one region one 
dimensional spherical reactor core with the following parameters, then compare the 
results to those calculated numerically with the criticality code listed in the Appendices. 
 Radius       R = 50.0 cm 
 Diffusion coefficient     D = 1.0 cm 
 Macroscopic absorption cross section:  ∑a = 0.75 cm-1

 Product of macroscopic fission cross 
 section and neutron yield per fission:   ν∑f = 0.78 neutron.cm-1

 
2. Consider a spherical reactor core with the following parameters:   
R = 35 [cms] 
D = 1.0 [cm] 

aΣ = 0.75 [cm
-1

] 

fνΣ =0.78 [neutron.cm
-1

] 
1p fε = = ≈  

a) Use the one-group diffusion theory to calculate the infinite medium multiplication 
factor, the diffusion area, the geometric buckling, and the effective multiplication factor.   
b) Calculate analytically the radius that will make this reactor just critical.   
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c) Now use the numerical criticality code to check the analytical result for the effective 
multiplication factor, and compare it to the analytical result given in part1 above.  Plot 
the normalized flux distribution.   
d) Perform a “Criticality Search” by varying the radius of the reactor, plot the value of 
the effective multiplication factor against the radius, and deduce the critical radius, or the 
radius that will make the effective multiplication factor equal to unity.  Check the 
numerical result against the analytical result in part 2 above.   
e) Now, surround your reactor with a reflector of your choice (e.g. H

2
O, D

2
O, Be, C, 

U
238

, etc.).  Treat the problem as a two-region reactor.  By varying both the thickness of 
the reflector and the radius of the core, optimize the design by determining a choice of 
appropriate core radius and reflector thickness.  Justify your choice of the optimal 
configuration.  Plot your results and discuss your observations and findings.  Plot the 
normalized flux in your optimized final configuration.  
 
REFERENCES 
 

1.  M. Ragheb, “Lecture Notes on Fission Reactors Design Theory,” FSL-33, University of 
Illinois, 1982. 

2.  J. R. Lamarsh, “Introduction to Nuclear Engineering,” Addison-Wesley Publishing 
Company, 1983. 
 
APPENDIX  
 

CRITICALITY CODE LISTING 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! Multiregion One-dimensional One-group Diffusion Theory Criticality Code 
! Evaluation of Effective Multiplication Factor or Eigenvalue and Normalized Neutron Flux 
! Enhanced version of the ODOG procedure using the Power Iteration Method  
! ANSI Fortran-90 or 95 procedure. Unix or Windows operating System. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!          
! Dr. M. Ragheb 
! Department of Nuclear, Plasma and Radiological Engineering 
! University of Illinois at Urbana-Champaign 
! 216 Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801, USA. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 program criticality 
! 
! Version 4.5, 2008 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 real lamda1,lamda2 
! lamda1 = first eigenvalue iteration 
! lamda2 = second eigenvalue iteration 
! Maximum number of regions in dimension statement = 5 
 dimension rr(5),delx(5),n(5),r(100),rp12(100),rm12(100),delr(100) 
! rr  = distances delimiting regions, measured from plane of symmetry [cm] 
! delx = size of interval in each region, chosen as equal to or less than the neutron 
!    mean free path in the region [cm] 
! n  = number of intervals in each region 
! r  = r(j) = distance of each point from the origin 
! rp12 = r(j + 1/2) 
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! rm12 = r(j - 1/2) 
! delr = r(j+1)-r(j) 
 dimension d(5),dp12(100),dm12(100),sigma(5),sigp(100),sigm(100) 
! d  = diffusion coefficient in each region [cm] 
! dp12 = d(j + 1/2) 
! dm12 = d(j - 1/2) 
! sigma = macroscopic absorption cross section in each region [cm-1] 
! sigp = sigma(j+) 
! sigm = sigma(j-) 
 dimension ms(5),f(5),fp(100),fm(100),a(100),b(100),c(100),w(100),biga(100,100) 
! ms  = number of intervals up to and including each region 
! f  = nu*sigmaf, product of average number of neutrons per fission event and 
!    macroscopic fission cross section [neutrons*cm-1] 
! fp  = f(j+) 
! fm  = f(j-) 
! a  = matrix super diagonal 
! b  = matrix diagonal 
! c  = matrix sub-diagonal 
! w  = source term of the diffusion equation in matrix form 
! biga = diffusion operator matrix 
 dimension phi1(100),phi2(100),s1(100),s2(100),psi(100) 
! phi1 = first flux iteration 
! phi2 = second flux iteration 
! s1  = first source term iteration 
! s2  = second source term iteration 
! psi  = source term 
! 
! Sample input file 'incrit1', for a single region bare unreflected spherical reactor core 
! 1 2+0.1e-05 
!    50.0   
!     1.0 
!     0.75 
!     0.78 
!     0.000     0.000     0.000 
! Sample input file 'incrit2', for a two region spherical reactor core with outer reflector 
! 2 2+0.1e-05 
!     7.000    11.000   
!     1.0       0.164 
!     0.750     0.022 
!     0.780     0.00 
!     0.000     0.000     0.000  
! Sample input file 'incrit3', for a three region spherical reactor core with inner and outer reflectors 
! 3 2+0.1e-05 
!     2.000     8.000    12.000   
!     0.164     1.0       0.164 
!     0.022     0.750     0.022 
!     0.00      0.780     0.00 
!     0.000     0.000     0.000  
! 
 character*1 tab 
 tab=char(9) 
! Open the input and output files 
! Input file is:  incrit 
! Output file is:  outcrit 
! Plotting file is plot 
 open(unit=10,file='incrit3',status='old') 
 open(unit=11,file='outcrit') 
 open(unit=12,file='plot') 
!   Write program information 
 write (11,23) 
 write (*,23) 
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23 format('Multiregion One-dimensional One-group Diffusion Theory Criticality',/,& 
 &'Effective Multiplication factor or Eigenvalue and neutron flux evaluated',/,& 
 &'Enhanced version of the ODOG procedure using the Power Iteration Method',/,& 
 &'Fortran-90 or 95 procedure',/,& 
 &'Unix or Windows operating system',/& 
    &'Dr. Magdi Ragheb',/,& 
 &'University of Illinois at Urbana-Champaign',/,& 
 &'216 Talbot laboratory, 104 S. Wright St., Urbana, Illinois 61801, USA.',/) 
! Read problem data from file incrit 
! Write problem output on file outcrit 
! Write plot file on file plot for input to plotting routine, e. g. Microsoft Excel 
 read(10,1)m,nn,eps  
1 format(2I2,e8.1) 
! m  = number of regions 
! nn  = geometry index, nn=0 cartesian geometry 
!        nn=1 cylindrical geometry 
!        nn=2 spherical geometry 
! eps  = convergence parameter for the eigenvalue iteration 
 write (11,91) 
 write (*,91) 
91 format('Number of regions',2x,'Geometry Index: 0=cartesian 1=cylindrical 2=spherical',& 
   &2x,'Convergence parameter') 
 write (11,1) m,nn,eps 
 write (*,1) m,nn,eps 
 read(10,2)(rr(i),i=1,m) 
2 format(8f10.3) 
 write(11,3) 
 write(*,3) 
3 format('Regions boundaries') 
 write(11,2)(rr(i),i=1,m) 
 write(*,2)(rr(i),i=1,m) 
 read(10,2)(d(i),i=1,m) 
 write(11,4) 
 write(*,4) 
4 format('Regions diffusion coefficients') 
 write(11,2)(d(i),i=1,m) 
 write(*,2)(d(i),i=1,m) 
 read(10,2)(sigma(i),i=1,m) 
 write(11,5) 
 write(*,5) 
5 format('Regions macroscopic absorption cross section') 
 write(11,2)(sigma(i),i=1,m) 
 write(*,2)(sigma(i),i=1,m) 
 read(10,2)(f(i),i=1,m) 
 write(11,6) 
 write(*,6) 
6 format('Regions nu*macroscopic fission cross section product') 
 write(11,2)(f(i),i=1,m) 
 write(*,2)(f(i),i=1,m) 
 read(10,93)bcz,bpy,bpz 
93 format(3f10.3) 
 write(11,92) 
 write(*,92) 
92 format('Buckling corrections') 
 write(11,93) bcz,bpy,bpz 
 write(*,*) bcz,bpy,bpz 
! Buckling corrections allow for three dimensional effects.  
! The buckling corrections can be assigned zero values. 
! bcz  = cylindrical geometry buckling axial correction  
! bpy  = cartesian geometry buckling correction in y direction 
! bpz  = cartesian geometry buckling correction in z direction 
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! 
 if(nn.eq.2)write(11,7) 
 if(nn.eq.2)write(*,7) 
7 format('Spherical Geometry') 
 if(nn.eq.1)write(11,8) 
 if(nn.eq.1)write(*,8) 
8 format('Cylindrical Geometry') 
 if(nn.eq.0)write(11,9) 
 if(nn.eq.0)write(*,9) 
9 format('Cartesian Geometry') 
 if(nn.eq.2) go to 222 
 if(nn.eq.0) go to 111 
! Buckling correction in the axial direction for a finite height cylinder 
 do i=1,m 
  sigma(i)=sigma(i)+d(i)*bcz 
 end do 
 go to 222 
! Buckling correction in the y and z dimensions in cartesian geometry 
111 do i=1,m 
  sigma(i)=sigma(i)+d(i)*(bpy+bpz) 
 end do 
! Computation of the number of intervals in each region 
222 n(1)=rr(1)*sigma(1)+1 
 n1=n(1) 
 if(n1.le.10) n(1)=20 
 if(m.gt.1) go to 333 
 m=2 
 rr(2)=rr(1) 
 rr(1)=rr(1)/2.0 
 n(1)=rr(1)*sigma(1)+1 
 d(2)=d(1) 
 f(2)=f(1) 
 sigma(2)=sigma(1) 
333 do i=2,m 
  n(i)=(rr(i)-rr(i-1))*sigma(i) 
  ni=n(i) 
  if(ni.le.10) n(i)=20 
 end do 
 write (11,12) 
 write(*,12) 
12 format('Number of intervals in each region') 
 write(11,13)(n(i),i=1,m) 
 write(*,13) (n(i),i=1,m) 
13 format(5i10) 
! Computation of the size of intervals in each region 
 delx(1)=rr(1)/(n(1)-0.5) 
 do i=2,m 
  delx(i)=(rr(i)-rr(i-1))/n(i) 
 end do 
 write(11,14) 
 write(*,14) 
14 format('Interval sizes in each region') 
 write(11,2)(delx(i),i=1,m) 
 write(*,2)(delx(i),i=1,m) 
! Initialization of first mesh point variables 
 r(1)=delx(1)/2.0 
 rp12(1)=r(1)+delx(1)/2.0 
 rm12(1)=0.0 
 delr(1)=delx(1) 
 delrm=delx(1)/2.0 
 dp12(1)=d(1) 
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 dm12(1)=d(1) 
 sigp(1)=sigma(1) 
 sigm(1)=sigma(1) 
 fp(1)=+f(1) 
 fm(1)=+f(1) 
 a(1)=(rp12(1)**nn)*dp12(1)/delr(1) 
 c(1)=0.0 
 b(1)=a(1)+c(1)+r(1)**nn*(sigp(1)*delr(1)+sigm(1)*delrm) 
 w(1)=r(1)**nn*(delr(1)*fp(1)+delrm*fm(1)) 
 ms(1)=n(1) 
 do i=2,m 
  ms(i)=ms(i-1)+n(i) 
 end do 
 nt=ms(m) 
! Computation of mesh parameters in first region 
 n1=n(1) 
 do 555 i=2,n1 
  r(i)=r(1)+(i-1)*delx(1) 
  if(i.eq.n1) go to 444 
  rp12(i)=r(i)+delx(1)/2.0 
  rm12(i)=r(i)-delx(1)/2.0 
  fp(i)=f(1) 
  fm(i)=f(1) 
  sigp(i)=sigma(1) 
  sigm(i)=sigma(1) 
  dp12(i)=d(1) 
  dm12(i)=d(1) 
  go to 555 
444  rp12(i)=r(i)+delx(2)/2.0 
  rm12(i)=r(i)-delx(1)/2.0 
  fp(i)=f(2) 
  fm(i)=f(1) 
  sigp(i)=sigma(2) 
  sigm(i)=sigma(1) 
  dp12(i)=d(2) 
  dm12(i)=d(1) 
555 continue 
! Computation of mesh parameters in other regions 
 delx(m+1)=0.0 
 f(m+1)=0.0 
 sigma(m+1)=0.0 
 d(m+1)=0.0 
 do 666 i=2,m 
  msi=ms(i) 
  msm=ms(i-1) 
 do 666 k=msm,msi 
  r(k)=r(msm)+(k-msm)*delx(i) 
  if(k.eq.msm) go to 777 
  if(k.eq.msi) go to 888 
  rp12(k)=r(k)+delx(i)/2.0 
  rm12(k)=r(k)-delx(i)/2.0 
  fp(k)=f(i) 
  fm(k)=f(i) 
  sigp(k)=sigma(i) 
  sigm(k)=sigma(i) 
  dp12(k)=d(i) 
  dm12(k)=d(i) 
  go to 666 
777  rp12(k)=r(k)+delx(i)/2.0 
  rm12(k)=r(k)-delx(i)/2.0 
  fp(k)=f(i) 
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  fm(k)=f(i-1) 
  sigp(k)=sigma(i) 
  sigm(k)=sigma(i-1) 
  dp12(k)=d(i) 
  dm12(k)=d(i-1) 
  go to 666 
888  rp12(k)=r(k)+delx(i+1)/2.0 
  rm12(k)=r(k)-delx(i)/2.0 
  fp(k)=f(i+1) 
  fm(k)=f(i) 
  sigp(k)=sigma(i+1) 
  sigm(k)=sigma(i) 
  dp12(k)=d(i+1) 
  dm12(k)=d(i) 
666 continue 
! Computation of sub-diagonal, diagonal, super-diagonal, and source terms 
 l=nt-1 
 do i=2,l 
  delr(i)=r(i+1)-r(i) 
  a(i)=rp12(i)**nn*dp12(i)/delr(i) 
  c(i)=rm12(i)**nn*dm12(i)/delr(i-1) 
  b(i)=a(i)+c(i)+r(i)**nn*(sigp(i)*delr(i)+sigm(i)*delr(i-1))/2.0 
  w(i)=r(i)**nn*(fp(i)*delr(i)+fm(i)*delr(i-1))/2.0 
 end do 
 write(11,15) 
 write(*,15) 
15 format(10x,'Sub-diagonal',10x,'Diagonal',10x,'Super-Diagonal',5x,'Source Term') 
 do i=1,l 
  a(i)=-a(i) 
  c(i)=-c(i) 
  write(11,16)c(i),b(i),a(i),w(i) 
  write(*,16)c(i),b(i),a(i),w(i) 
 end do 
16 format(4(10x,E10.3)) 
! Formation of matrix of coefficients A 
 do  i=1,l 
  do j=1,l 
   if(i.eq.j) go to 116  
   if(i.eq.j+1) go to 117  
   if(i.eq.j-1) go to 118  
   biga(i,j)=0.0 
   go to 119 
116         biga(i,j)=b(i) 
   go to 119 
117   biga(i,j)=c(i) 
   go to 119 
118         biga(i,j)=a(i) 
119  continue 
        end do  
 end do 
! Coefficients matrix is written as needed by uncommenting the following statements 
! write(*,*) biga 
! do i=1,l 
!  write(11,17)(biga(i,j),j=1,l) 
!  write(*,17)(biga(i,j),j=1,l) 
!17  format(5E12.4) 
! end do 
121 iff=1 
 c(1)=0.0 
 a(l)=0.0 
 lamda1=1.0 
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 do i=1,l 
  phi1(i)=1.0 
 end do 
 kk=1 
123 continue 
 do i=1,l 
  s1(i)=w(i)*phi1(i) 
  psi(i)=s1(i)/lamda1 
 end do 
! Solve tridiagonal linear system of equations 
 call tridag(iff,l,c,b,a,psi,phi2) 
 phim=0.0 
 do i=1,l 
  if(phim.lt.phi2(i)) phim=phi2(i) 
 end do 
 do i=1,l 
  phi1(i)=phi2(i)/phim 
 end do 
 do i=1,l 
  s2(i)=w(i)*phi2(i) 
 end do 
 sumt=0.0 
 sumb=0.0 
 do i=1,l 
  sumt=sumt+s2(i)*s2(i) 
  sumb=sumb+s2(i)*psi(i) 
 end do 
 lamda2=sumt/sumb 
! Calculate relative error for use as convergence parameter 
 rat=abs((lamda1-lamda2)/lamda1) 
 if(rat.lt.eps) go to 122 
 lamda1=lamda2 
 kk=kk+1 
 go to 123 
122 continue 
 write(11,18)kk 
 write(*,18)kk 
18 format('The number of outer iterations is:',I5) 
 write(11,19) 
 write(*,19) 
19 format(3x,'Distance',1x,'Normalized Flux') 
 do i=1,l 
  write(11,20)r(i),tab,phi1(i) 
  write(*,20)r(i),tab,phi1(i) 
 end do 
 do i=1,l 
  write(12,20) r(i),TAB,phi1(i) 
 end do 
20 format(f10.3,a1,f10.3) 
 write(11,21) 
 write(*,21) 
21 format('Eigenvalue, Effective multiplication factor, k(eff).') 
 write(11,22)lamda2 
 write(*,22)lamda2 
22 format(f12.4) 
 end       
!      
 subroutine tridag(ifirst,ilast,a,b,c,d,v) 
! This procedure solves a system of simultaneous linear equations with a tridiagonal 
!   coefficient matrix. 
! a = array of sub-diagonal coefficients 
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! b = array of diagonal coefficients 
! c = array of super-diagonal coefficients 
! d = source vector 
! v(if) ... v(l) = final solution vector 
! ifirst  = first equation number 
! ilast = last equation number 
! beta, gamma = intermediate arrays 
 dimension a(100),b(100),c(100),d(100),v(100),beta(201),gamma(201) 
! Generate intermediate arrays beta an gamma 
 beta(ifirst)=b(ifirst) 
 gamma(ifirst)=d(ifirst)/beta(ifirst) 
 ifirstp1=ifirst+1 
 do i=ifirstp1,ilast 
  beta(i)=b(i)-(a(i)*(c(i-1)/beta(i-1))) 
  gamma(i)=(d(i)-a(i)*gamma(i-1))/beta(i) 
 end do 
! Computation of final solution vector 
 v(ilast)=gamma(ilast) 
 last=ilast-ifirst 
 do k=1,last 
  i=ilast-k 
  v(i)=gamma(i)-(c(i)*(v(i+1)/beta(i))) 
 end do 
 return 
 end 
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