
NUMERICAL METHODS FOR DIFFUSION THEORY
CRITICALITY

© M. Ragheb
4/11/2008

1. INTRODUCTION

The diffusion equation can be solved analytically for simple geometries and
material compositions such as homogeneous reactors. More complex reactor designs
involve multiple regions of different compositions such as core regions with fissile
materials and reflector regions with scattering materials. This suggests the discretization
of the diffusion equation in the spatial variable at specified mesh points and the use of
computers to solve the ensuing linear system of equations for the magnitude of the flux at
4each mesh point, as well as the corresponding eigen-value which is the effective
multiplication factor.

2. THE ONE GROUP DIFFUSION EQUATION

 Multi-group diffusion theory problems involve a calculation in the spatial variable
for each group of neutrons. To study the treatment of the spatial variable, we thus
concentrate on the treatment of the one-group diffusion equation:

)()()()()]()(.[rr
k

rrrrD f
f

a φ
ν

φφ Σ=Σ+∇∇−
 (1)

where we explicitly account for the spatial dependence of the diffusion coefficient D, the
macroscopic absorption cross section)(raΣ , the macroscopic fission cross section

)(rfΣ , and the neutron flux)(rφ .
 The factor k is here the eigen-value belonging to the fundamental eigen-vector

)(rφ . If k > 1, the system is supercritical, since the neutron production must be reduced
for the neutron balance to be valid. If k = 1, then the losses of neutrons are equal to the
production rate and the system is critical. If k < 1, the system is subcritical. Thus k can
be identified as the effective multiplication factor of the multiplying system.
 In addition to Eqn. 1, we must satisfy the boundary condition that the neutron flux
vanishes at the extrapolated boundary of the system:

 () (0.71) () 0tr eR d R Rφ φ λ φ+ = + = = (2)

where R is the reactor’s core radius in spherical geometry, and trλ is the transport mean
free path.

 1

3. ANALYTICAL EXPRESSION FOR THE MULTIPLICATION
FACTOR

 In spherical geometry Eqn. 1 becomes:

)()()()()]()([1 2
2 rr

k
rrr

dr
drDr

dr
d

r f
f

a φ
ν

φφ Σ=Σ+− (3)

 For a homogeneous reactor,

D(r) = D =constant,
aΣ , fΣ = constant,

and Eqn. 3 simplifies to:

0)(][1])(2)(
2

2

=Σ−Σ++ r
kDdr

rd
rdr

rd
af

f φ
νφφ (4)

If we let:

r
rur)()(=φ (5)

thus: 2

)()(1)(
r
ru

dr
rdu

rdr
rd

−=
φ

and: 322

2

22

2)(2)(1)(1)(1)(
r
ru

dr
rdu

rdr
rud

rdr
rdu

rdr
rd

+−+−=
φ

Substituting in Eqn. 4, we get:

0][12122112 3232

2

2 =Σ−
Σ

+−+++−
r
u

kDr
u

dr
du

rr
u

dr
rd

rdr
du

r a
ffν

Upon cancellation of terms, we get:

 01
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
Σ−

Σ
+ u

kDdr
ud

a
ffν

 (6)

Equation 6 has a solution:

)sin()cos(BrCBrAu += (7)

 2

From Eqn.5, the neutron flux is thus given by:

r

BrC
r

BrA)sin()cos(
+=φ (8)

where the material buckling is given by:

 ⎥
⎦

⎤
⎢
⎣

⎡
Σ−

Σ
= a

ff
m kD

B
ν12 (9)

Since the neutron flux must remain finite at the center of the reactor’s core at r =

0, this implies that the constant A = 0, and:

r

BrC)sin(
=φ (10)

At the extrapolated core boundary, Eqn. 2 applies, and we get:

 0
)sin(

)(==
e

e
e R

BRCRφ (11)

where tre RR λ71.0+=

is the extrapolated radius.

This implies that:

 ,...3,2,1, == nnBRe π (12)

 For the fundamental mode eigenvalue, n = 1, and the geometrical buckling is
given by:

 22)(
e

g R
B π

= (13)

 The criticality condition is obtained by equating the geometrical buckling to the
material buckling, to the buckling in general:

 222 BBB mg ==

Thus using Eqns. 9 and 13 we get:

 3

 2)(1

e
a

ff

RkD
πν

=⎥
⎦

⎤
⎢
⎣

⎡
Σ−

Σ

from which we the criticality equation in spherical geometry as:

2)(

e
a

ff

R
D

k
π

ν

+Σ

Σ
= (14)

 Another form for the multiplication factor k can be obtained from Eqn. 1 if we
integrate over the reactor’s volume:

∫ ∫

∫
Σ+∇∇−

Σ
=

V V
a

V
ff

dVrrdVrD

dVrr
k

)()()](.[

)()(

φφ

φν
 (15)

which is the ratio of the neutron production rate from fissions to the neutron loss rates
due to leakage and to absorptions.
 It was possible to obtain an exact analytical solution for)(rφ in the case of a
homogeneous reactor. If the system is not homogeneous when D(r) is not a constant;
which is the situation encountered in practice, a discretization of the spatial variable r
becomes necessary.

 4. DISCRETIZATION OF THE DIFFUSION EQUATION

 We consider Eqn. 3 for discretization, and we use the “Box Integration” method
to discretize it. The spatial coordinate is subdivided into mesh points as shown in Fig. 1
for spherical coordinates.
 Around each spatial mesh point (j), one can apply neutron conservation, by
constructing a box and integrating the diffusion equation over it. This establishes a
relationship between each mesh point and the adjacent ones. We choose the j-th point to
be lying on the interfaces between two regions.
 The spacing between the mesh points does not have to be uniform and is given
by:

 jjj rrr −=∆ +1 (16)

Integrating Eq 3 from to yields: 2/1−jr 2/1+jr

 4

drrrr
k

drrrr

drr
dr

rdrDr
dr
d

r
j

j

j

j

j

j

r

r
f

f
r

r
a

r

r

22

22
2

4.)()(4)()(

4])()([1

2/1

2/1

2/1

2/1

2/1

2/1

πφ
ν

πφ

πφ

∫∫

∫
+

−

+

−

+

−

Σ=Σ+

−

 (17)

Integrating the leakage term we get:

drrrr

k
drrrr

dr
rdrDr

dr
rdrDr

j

j

j

j

jj

r

r
f

f
r

r
a

rr

22

22

2/1

2/1

2/1

2/1

2/12/1

)()()()(

])()([])()([

∫∫
+

−

+

−

−+

Σ=Σ+

+−

φ
ν

φ

φφ

 (18)

Since the material properties can vary, particularly around interfaces, we expand

the flux in the two integrals in a Taylor’s series in which we truncate after the second
term:

 5

dr
dr

rd
rrrrr

dr
dr

rd
rrrrr

drrrrdrrrrdrrrrI

j

j

j

j

j

j

j

j

j

j

r

r j

j
jjjjaj

r

r j

j
jjjjaj

r

r
a

r

r
a

r

r
a

∫

∫

∫∫∫

+

+

−

−

+

+

−

−

+

−

+−+Σ+

++−−Σ=

Σ+Σ=Σ=

+
+

+
+++

−

−
−−−+

2/1

2/1

2/1

2/1

2/1

2/1

...]
)(

)()()[()(

...]
)(

)()()[()(

)()()()()()(

2/1
2

2/1
2

222
1

φ
φ

φ
φ

φφφ

 (19)

If we make the approximations:

222)()()(jjj rrr ≅≅ +−

∫ ∫ −≅−

−

−

+

+

+
+

+

−

−
−

j

j

j

j

r

r

r

r j

j
jj

j

j
jj dr

dr

rd
rrdr

dr

rd
rr

2/1

2/1)(
)(

)(
)(2/12/1

φφ

the integral is approximately equal to:

2
)(

)()()(
2

)(
)()()(

))(()()())(()()(

))(()()())(()()(

1212

2/1
2

2/1
2

2/1
2

2/1
2

1

jj
jjaj

jj
jjaj

jjjjajjjjjaj

jjjjajjjjjaj

rr
rrr

rr
rrr

rrrrrrrrrr

rrrrrrrrrrI

−
Σ+

−
Σ≅

−Σ+−Σ≅

−Σ+−Σ≅

++−−

+
+

−
−

+
+

++
−

−−−

φφ

φφ

φφ

 (20)

where we used approximation:

)()()(jjj rrr φφφ ≅≅ +−

In the case where:
)()(+− Σ≅Σ jaja rr ,

which applies to all the points except at the interfaces, we get:

)()(+− Σ≅Σ jaja rr
and:

 6

2
)()(

2
)()(

12

112
1

−

−+

∆+∆
Σ≅

−
Σ≅

jj
jjaj

jj
jjaj

rr
rrr

rr
rrrI

φ

φ
 (21)

The same relationship holds for the source integral:

2

.))(()(12
2

−∆+∆
Σ≅ jj

jjjf
f rr

rrr
k

I φ
ν

 (22)

Substituting in Eq. 18 we can write:

2
.))(()(

2
)()(])()([])()([

12

1222
2/12/1

−

−

∆+∆
Σ=

∆+∆
Σ+−

+−

jj
jjjf

f

jj
jjajrr

rr
rrr

k

rr
rrr

dr
rdrDr

dr
rdrDr

jj

φ
ν

φφφ

 (23)

We can now approximate the derivatives by forward first order difference equations:

1

1)()()(

2/1 −

−

∆

−
≅⎥⎦

⎤
⎢⎣
⎡

− j

jj

r r
rr

dr
rd

j

φφφ (24)

1

1)()()(

2/1 −

+

∆

−
≅⎥⎦

⎤
⎢⎣
⎡

+ j

jj

r r
rr

dr
rd

j

φφφ (25)

Inserting Eqns. 24 and 25 into Eqn. 21, we get:

2
.))(()(

2
)()(

)(
)(

)(
)(

)(
)(

)(
)(

12

12

1
2/1

2
2/12/1

2
2/1

1

1
2/1

2
2/1

1
2/1

2
2/1

−

−

+
++++

−

−
−−

−
−−

∆+∆
Σ=

∆+∆
Σ

+
∆

−
∆

+
∆

−
∆

jj
jjjf

f

jj
jjaj

j

j
jj

j

j
jj

j

j
jj

j

j
jj

rr
rrr

k

rr
rrr

r
r

rDr
r
r

rDr

r
r

rDr
r
r

rDr

φ
ν

φ

φφ

φφ

 (26)

At an interface the last two terms are replaced by their equivalents from Eq.20 as:

 7

2
))(()(

2
))(()(

2
)()(

2
)()(

)(
)(

)(
)(

)(
)(

)(
)(

212

212

1
2/1

2
2/12/1

2
2/1

1

1
2/1

2
2/1

1
2/1

2
2/1

j
jjjf

fj
jjjf

f

j
jjaj

j
jjaj

j

j
jj

j

j
jj

j

j
jj

j

j
jj

r
rrr

k

r
rrr

k

r
rrr

r
rrr

r
r

rDr
r
r

rDr

r
r

rDr
r
r

rDr

∆
Σ+

∆
Σ=

∆
Σ+

∆
Σ

+
∆

−
∆

+
∆

−
∆

+−−

+−−

+
++++

−

−
−−

−
−−

φ
ν

φ
ν

φφ

φφ

φφ

 (27)

Thus we have two finite difference equations relating the mesh points, one

applying for interface points, and one for non-interface points.
Combining the terms in 1−jφ , jφ and 1+jφ we can now write the finite

difference equations for the mesh points:

 1 j 1 , 1,2,..., 1j
j j j j j j

F
a b c j N

k
φ φ φ φ+ −− + − = = + (28)

where we have defined:

)(jj rφφ ≡

j

jj
j r

rDr
a

∆
≡ ++)(2/12/1

])()([
2

)()(
1

2
2/1

2
2/12/1

2
2/1

jjajja
j

j

jj

j

jj
j rrrr

r
r
rDr

r
rDr

b ∆Σ+∆Σ+
∆

+
∆

≡ +
−

−++−−

1

2/1
2

2/1)(

−

−−

∆
≡

j

jj
j r

rDr
c

])()([
2 1

2

jjfjjf
jf

j rrrr
k
r

F ∆Σ+∆Σ≡ +
−

−ν

If we expand Eqns. 28, and set 01 =+Nφ .0 as the boundary condition, we get the

tri-diagonal linear system:

 8

N
N

NNNN k
Fbc

k
Fabc
k
Fabc
k
Fab

φφφ

φφφφ

φφφφ

φφφ

=+−

=
=
=

=−+−

=−+−

=−+

−1

3
3

433323

2
2

322212

1
1

2111

....

....

.... (29)

 In matrix form this equation can be written as:

 φφ
k
F

A = (30)

where:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−

−+−
−+−

−+

=

NN bc

abc
abc

ab

A
333

222

11

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

NF

F
F

F

F
3

2

1

and: 1(φφ = 2φ 3φ)Nφ

 9

The method used above is called a "three-point difference method" since the flux

equations at three neighboring points j-1, j and j+1 are coupled to each other.

5. TREATMENT OF DIFFERENT GEOMETRIES

 The previous derivation is formulated for spherical geometry. For other
geometries, the leakage term is written in general as:

)]([1).(
dr
dDr

dr
d

r
D φφ γ

γ=∇∇ (31)

where:

0=γ , for cartesian coordinates
1=γ , for cylindrical coordinates
2=γ , for spherical coordinates

The volume elements in each case are also given by:

 drrdV γδγ
γ

γπ)1(02 −= (32)

where:

00 =γδ , ∀ 0≠γ
 1= , ∀ 0=γ ,

is the Kronecker delta.

The 2π or 4π factors do not appear in the finite difference equations. The
volume element is a true volume element only in spherical coordinates. In cylindrical
coordinates it is a surface element, and it is a line element in slab geometry.

6. THE BUCKLING CORRECTION FOR MULTIMENSIONAL
SYSTEMS

 The buckling correction allows accounting for three-dimensional effects in a one-
dimensional numerical calculation, by recognizing that the buckling in a given dimension
represents neutron leakage and can be replaced by an effective absorption rate term.
 In three dimensions and cartesian coordinates, the diffusion equation:

 0)()()(=
Σ

+Σ−
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂ φ

ν
φφφφ

kz
D

zy
D

yx
D

x
ff

a (33)

 10

If we solve the equation in the x-direction only but wish to account for the
neutron leakage in the y and z directions, assuming homogeneity in those directions, we
can do this by writing:

 02
2

2
2

2

=+=+ φφφφ
zy B

dz
dB

dy
d (34)

Thus Eqn. 33 can be written as:

 [] 0)()()()(22 =
Σ

+Σ++−⎥⎦
⎤

⎢⎣
⎡ x

k
xDBB

dx
xdD

dx
d ff

azy φ
ν

φφ

or:

 0)()()(' =
Σ

+Σ−⎥⎦
⎤

⎢⎣
⎡ x

k
x

dx
xdD

dx
d ff

a φ
ν

φφ (35)

where a modified macroscopic cross section term in cartesian coordinates is used as:

 []azya DBB Σ++=Σ)(22' (36)

In cylindrical coordinates, it becomes:

 []aza DB Σ+=Σ 2' (37)

Thus one can compensate for the leakages that are not included in a one-
dimensional calculation by assuming homogeneity in the untreated directions.

7. CRITICALITY OF BARE UNREFLECTED REACTOR CORES

We consider a bare unreflected spherical reactor core with the following parameters:

Radius R = 50.0 [cm]
Diffusion coefficient D = 1.0 [cm]
Macroscopic absorption cross section: ∑

a
= 0.75 [cm

-1
]

Product of macroscopic fission cross
section and neutron yield per fission: ν∑

f
= 0.78 [neutron.cm

-1
]

The diffusion area of the reactor can be calculated as:

 2 21 1.333[]
0.75a

DL c= = =
Σ

m

 11

The geometric buckling is:

2 2 2

2 33.948 10 []
50b

e

2B x cm
R R
π π π − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ≈ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

where we are ignoring the extrapolated distance.

We rewrite Eqn. 14 as:

 2 2
2 2 1() 1 ()

f f

f f a

a
e a e

kk D L BD
R R

ν
ν

π π
∞

Σ
Σ Σ

= = =
+Σ + +

Σ

 (38)

We can then calculate the infinite medium multiplication factor from Eqn. 38 as:

 0.78 1.04
0.75

f

a

k
ν

∞

Σ
= = =

Σ

and consequently an exact analytical solution for the effective multiplication factor can
be calculated as:

 2 2 3

1.04 1.03455
1 1 1.333 3.948 10eff

g

kk
L B x x
∞

−= = =
+ +

If the numerical code is used to calculate this value of the effective multiplication

factor, the following input data file for a single “1” region reactor, a spherical geometry
“2”, and a convergence factor of “0.1e-5”, and the values of the radius (R = 50.0 [cm]),
diffusion coefficient (D = 1.0 [cm]), macroscopic absorption cross section (∑

a
 = 0.75

[cm
-1

]), and the product of the average number of neutron per fission and macroscopic
fission cross section (ν∑

f
 = 0.78 [neutron.cm

-1
]), and zero geometric buckling correction

values, can be used as input values:

 1 2+0.1e-05
 50.0
 1.0
 0.75
 0.78
 0.000 0.000 0.000

The numerical value for the effective multiplication value is remarkably similar to
the earlier obtained analytical value as:

 12

 () 1.0345eff numericalk =

Obviously such a value of the effective multiplication factor implies a
supercritical reactor. To obtain the value of the critical radius, one uses the criticality
code in performing a criticality search. By varying the value of the radius as shown in
Fig. 2, and inverting the graph at the effective multiplication value of unity one can
obtain from the graph a critical radius of:

 17.77[]criticalR cm=

Fig. 2: Effective multiplication value k
eff

 as a function of the core radius R.

For this critical radius, the pointwise numerical values of the normalized flux can
be plotted and are shown in Fig. 3.

 13

Fig. 3: Normalized flux distribution for the critical core.

8. CRITICALITY OF REFLECTED CORES

The advantage of a numerical approach to criticality becomes apparent when one
deals with geometries and configurations that do not easily lend themselves to the
derivation of exact analytical solutions like in the previous case. To demonstrate the
usefulness of the numerical approach, we consider here the criticality of a reflected core.
In this situation, the reactor geometry consists of two regions. The core region contains a
fissile material and is a multiplying medium in nature, and the outer region is a scattering
material.

This type of problem contains two degrees of freedom. By varying both the
reflector thickness and the inner core radius, one in fact obtains a three dimensional
surface of the effective multiplication factor as a function of the core radius and the
reflector thickness. The critical configuration is obtained as the intersection of this
surface with the plane representing an effective multiplication factor equal to unity. This
intersection can be projected on the plane of the core radius and reflector thickness
leading to a curve describing the combination of core radius and reflector thickness that
would make the system critical.

 14

Fig. 4:.Critical core radii and reflector thicknesses for different reflector materials.

If the numerical code is used to calculate this value of the effective multiplication

factor, the following input data file for a two region “2” region reactor, a spherical
geometry “2”, and a convergence factor of 0.1e-5, and the values of the radius (R = 8.0
[cm]), a reflector thickness of (11 - 8 = 3 cms), diffusion coefficient in the core (D = 1.0
[cm]), and in the reflector (D = 0.164 [cm]), macroscopic absorption cross section in the
core (∑

a
 = 0.75 [cm

-1
]), and in the reflector (∑

a
 = 0.022 [cm

-1
]) and the product of the

average number of neutron per fission and macroscopic fission cross section in the core
(ν∑

f
 = 0.78 [neutron.cm

-1
]), and in the reflector (ν∑

f
 = 0.00 [neutron.cm

-1
]) and zero

geometric buckling correction values can be used:

 2 2+0.1e-05
 8.000 11.000
 1.000 0.164
 0.750 0.022
 0.780 0.000
 0.000 0.000 0.000

Using the numerical approach one can investigate for instance the effects of
different reflectors on the criticality of a given core composition. In Fig. 4, the critical

 15

core radius and the associated reflector thicknesses using different moderators is shown.
It can be noticed that the reflector leads to a smaller critical radius in all the choices of
reflector materials, than the unreflected bare core.

If light water is chosen as the reflector material, Fig. 5 shows a choice of a critical
core radius at 8 cms, and an associated 3 cms of a water reflector. This is much smaller
than the critical radius of the bare core at 17.7 cms. Figure 5 shows the normalized core
and reflector flux distribution for light water as a reflector.

Fig. 5: A choice of a critical core radius and an associated reflector thickness for
light water as a reflecting material.

 16

Fig. 6: Normalized core and reflector flux distribution for light water as a reflector.

EXERCISES

1. Calculate analytically the effective multiplication factor for a one region one
dimensional spherical reactor core with the following parameters, then compare the
results to those calculated numerically with the criticality code listed in the Appendices.
 Radius R = 50.0 cm
 Diffusion coefficient D = 1.0 cm
 Macroscopic absorption cross section: ∑a = 0.75 cm-1

 Product of macroscopic fission cross
 section and neutron yield per fission: ν∑f = 0.78 neutron.cm-1

2. Consider a spherical reactor core with the following parameters:
R = 35 [cms]
D = 1.0 [cm]

aΣ = 0.75 [cm
-1

]

fνΣ =0.78 [neutron.cm
-1

]
1p fε = = ≈

a) Use the one-group diffusion theory to calculate the infinite medium multiplication
factor, the diffusion area, the geometric buckling, and the effective multiplication factor.
b) Calculate analytically the radius that will make this reactor just critical.

 17

c) Now use the numerical criticality code to check the analytical result for the effective
multiplication factor, and compare it to the analytical result given in part1 above. Plot
the normalized flux distribution.
d) Perform a “Criticality Search” by varying the radius of the reactor, plot the value of
the effective multiplication factor against the radius, and deduce the critical radius, or the
radius that will make the effective multiplication factor equal to unity. Check the
numerical result against the analytical result in part 2 above.
e) Now, surround your reactor with a reflector of your choice (e.g. H

2
O, D

2
O, Be, C,

U
238

, etc.). Treat the problem as a two-region reactor. By varying both the thickness of
the reflector and the radius of the core, optimize the design by determining a choice of
appropriate core radius and reflector thickness. Justify your choice of the optimal
configuration. Plot your results and discuss your observations and findings. Plot the
normalized flux in your optimized final configuration.

REFERENCES

1. M. Ragheb, “Lecture Notes on Fission Reactors Design Theory,” FSL-33, University of
Illinois, 1982.

2. J. R. Lamarsh, “Introduction to Nuclear Engineering,” Addison-Wesley Publishing
Company, 1983.

APPENDIX

CRITICALITY CODE LISTING

!!
! Multiregion One-dimensional One-group Diffusion Theory Criticality Code
! Evaluation of Effective Multiplication Factor or Eigenvalue and Normalized Neutron Flux
! Enhanced version of the ODOG procedure using the Power Iteration Method
! ANSI Fortran-90 or 95 procedure. Unix or Windows operating System.
!!
! Dr. M. Ragheb
! Department of Nuclear, Plasma and Radiological Engineering
! University of Illinois at Urbana-Champaign
! 216 Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801, USA.
!!
 program criticality
!
! Version 4.5, 2008
!!
 real lamda1,lamda2
! lamda1 = first eigenvalue iteration
! lamda2 = second eigenvalue iteration
! Maximum number of regions in dimension statement = 5
 dimension rr(5),delx(5),n(5),r(100),rp12(100),rm12(100),delr(100)
! rr = distances delimiting regions, measured from plane of symmetry [cm]
! delx = size of interval in each region, chosen as equal to or less than the neutron
! mean free path in the region [cm]
! n = number of intervals in each region
! r = r(j) = distance of each point from the origin
! rp12 = r(j + 1/2)

 18

! rm12 = r(j - 1/2)
! delr = r(j+1)-r(j)
 dimension d(5),dp12(100),dm12(100),sigma(5),sigp(100),sigm(100)
! d = diffusion coefficient in each region [cm]
! dp12 = d(j + 1/2)
! dm12 = d(j - 1/2)
! sigma = macroscopic absorption cross section in each region [cm-1]
! sigp = sigma(j+)
! sigm = sigma(j-)
 dimension ms(5),f(5),fp(100),fm(100),a(100),b(100),c(100),w(100),biga(100,100)
! ms = number of intervals up to and including each region
! f = nu*sigmaf, product of average number of neutrons per fission event and
! macroscopic fission cross section [neutrons*cm-1]
! fp = f(j+)
! fm = f(j-)
! a = matrix super diagonal
! b = matrix diagonal
! c = matrix sub-diagonal
! w = source term of the diffusion equation in matrix form
! biga = diffusion operator matrix
 dimension phi1(100),phi2(100),s1(100),s2(100),psi(100)
! phi1 = first flux iteration
! phi2 = second flux iteration
! s1 = first source term iteration
! s2 = second source term iteration
! psi = source term
!
! Sample input file 'incrit1', for a single region bare unreflected spherical reactor core
! 1 2+0.1e-05
! 50.0
! 1.0
! 0.75
! 0.78
! 0.000 0.000 0.000
! Sample input file 'incrit2', for a two region spherical reactor core with outer reflector
! 2 2+0.1e-05
! 7.000 11.000
! 1.0 0.164
! 0.750 0.022
! 0.780 0.00
! 0.000 0.000 0.000
! Sample input file 'incrit3', for a three region spherical reactor core with inner and outer reflectors
! 3 2+0.1e-05
! 2.000 8.000 12.000
! 0.164 1.0 0.164
! 0.022 0.750 0.022
! 0.00 0.780 0.00
! 0.000 0.000 0.000
!
 character*1 tab
 tab=char(9)
! Open the input and output files
! Input file is: incrit
! Output file is: outcrit
! Plotting file is plot
 open(unit=10,file='incrit3',status='old')
 open(unit=11,file='outcrit')
 open(unit=12,file='plot')
! Write program information
 write (11,23)
 write (*,23)

 19

23 format('Multiregion One-dimensional One-group Diffusion Theory Criticality',/,&
 &'Effective Multiplication factor or Eigenvalue and neutron flux evaluated',/,&
 &'Enhanced version of the ODOG procedure using the Power Iteration Method',/,&
 &'Fortran-90 or 95 procedure',/,&
 &'Unix or Windows operating system',/&
 &'Dr. Magdi Ragheb',/,&
 &'University of Illinois at Urbana-Champaign',/,&
 &'216 Talbot laboratory, 104 S. Wright St., Urbana, Illinois 61801, USA.',/)
! Read problem data from file incrit
! Write problem output on file outcrit
! Write plot file on file plot for input to plotting routine, e. g. Microsoft Excel
 read(10,1)m,nn,eps
1 format(2I2,e8.1)
! m = number of regions
! nn = geometry index, nn=0 cartesian geometry
! nn=1 cylindrical geometry
! nn=2 spherical geometry
! eps = convergence parameter for the eigenvalue iteration
 write (11,91)
 write (*,91)
91 format('Number of regions',2x,'Geometry Index: 0=cartesian 1=cylindrical 2=spherical',&
 &2x,'Convergence parameter')
 write (11,1) m,nn,eps
 write (*,1) m,nn,eps
 read(10,2)(rr(i),i=1,m)
2 format(8f10.3)
 write(11,3)
 write(*,3)
3 format('Regions boundaries')
 write(11,2)(rr(i),i=1,m)
 write(*,2)(rr(i),i=1,m)
 read(10,2)(d(i),i=1,m)
 write(11,4)
 write(*,4)
4 format('Regions diffusion coefficients')
 write(11,2)(d(i),i=1,m)
 write(*,2)(d(i),i=1,m)
 read(10,2)(sigma(i),i=1,m)
 write(11,5)
 write(*,5)
5 format('Regions macroscopic absorption cross section')
 write(11,2)(sigma(i),i=1,m)
 write(*,2)(sigma(i),i=1,m)
 read(10,2)(f(i),i=1,m)
 write(11,6)
 write(*,6)
6 format('Regions nu*macroscopic fission cross section product')
 write(11,2)(f(i),i=1,m)
 write(*,2)(f(i),i=1,m)
 read(10,93)bcz,bpy,bpz
93 format(3f10.3)
 write(11,92)
 write(*,92)
92 format('Buckling corrections')
 write(11,93) bcz,bpy,bpz
 write(*,*) bcz,bpy,bpz
! Buckling corrections allow for three dimensional effects.
! The buckling corrections can be assigned zero values.
! bcz = cylindrical geometry buckling axial correction
! bpy = cartesian geometry buckling correction in y direction
! bpz = cartesian geometry buckling correction in z direction

 20

!
 if(nn.eq.2)write(11,7)
 if(nn.eq.2)write(*,7)
7 format('Spherical Geometry')
 if(nn.eq.1)write(11,8)
 if(nn.eq.1)write(*,8)
8 format('Cylindrical Geometry')
 if(nn.eq.0)write(11,9)
 if(nn.eq.0)write(*,9)
9 format('Cartesian Geometry')
 if(nn.eq.2) go to 222
 if(nn.eq.0) go to 111
! Buckling correction in the axial direction for a finite height cylinder
 do i=1,m
 sigma(i)=sigma(i)+d(i)*bcz
 end do
 go to 222
! Buckling correction in the y and z dimensions in cartesian geometry
111 do i=1,m
 sigma(i)=sigma(i)+d(i)*(bpy+bpz)
 end do
! Computation of the number of intervals in each region
222 n(1)=rr(1)*sigma(1)+1
 n1=n(1)
 if(n1.le.10) n(1)=20
 if(m.gt.1) go to 333
 m=2
 rr(2)=rr(1)
 rr(1)=rr(1)/2.0
 n(1)=rr(1)*sigma(1)+1
 d(2)=d(1)
 f(2)=f(1)
 sigma(2)=sigma(1)
333 do i=2,m
 n(i)=(rr(i)-rr(i-1))*sigma(i)
 ni=n(i)
 if(ni.le.10) n(i)=20
 end do
 write (11,12)
 write(*,12)
12 format('Number of intervals in each region')
 write(11,13)(n(i),i=1,m)
 write(*,13) (n(i),i=1,m)
13 format(5i10)
! Computation of the size of intervals in each region
 delx(1)=rr(1)/(n(1)-0.5)
 do i=2,m
 delx(i)=(rr(i)-rr(i-1))/n(i)
 end do
 write(11,14)
 write(*,14)
14 format('Interval sizes in each region')
 write(11,2)(delx(i),i=1,m)
 write(*,2)(delx(i),i=1,m)
! Initialization of first mesh point variables
 r(1)=delx(1)/2.0
 rp12(1)=r(1)+delx(1)/2.0
 rm12(1)=0.0
 delr(1)=delx(1)
 delrm=delx(1)/2.0
 dp12(1)=d(1)

 21

 dm12(1)=d(1)
 sigp(1)=sigma(1)
 sigm(1)=sigma(1)
 fp(1)=+f(1)
 fm(1)=+f(1)
 a(1)=(rp12(1)**nn)*dp12(1)/delr(1)
 c(1)=0.0
 b(1)=a(1)+c(1)+r(1)**nn*(sigp(1)*delr(1)+sigm(1)*delrm)
 w(1)=r(1)**nn*(delr(1)*fp(1)+delrm*fm(1))
 ms(1)=n(1)
 do i=2,m
 ms(i)=ms(i-1)+n(i)
 end do
 nt=ms(m)
! Computation of mesh parameters in first region
 n1=n(1)
 do 555 i=2,n1
 r(i)=r(1)+(i-1)*delx(1)
 if(i.eq.n1) go to 444
 rp12(i)=r(i)+delx(1)/2.0
 rm12(i)=r(i)-delx(1)/2.0
 fp(i)=f(1)
 fm(i)=f(1)
 sigp(i)=sigma(1)
 sigm(i)=sigma(1)
 dp12(i)=d(1)
 dm12(i)=d(1)
 go to 555
444 rp12(i)=r(i)+delx(2)/2.0
 rm12(i)=r(i)-delx(1)/2.0
 fp(i)=f(2)
 fm(i)=f(1)
 sigp(i)=sigma(2)
 sigm(i)=sigma(1)
 dp12(i)=d(2)
 dm12(i)=d(1)
555 continue
! Computation of mesh parameters in other regions
 delx(m+1)=0.0
 f(m+1)=0.0
 sigma(m+1)=0.0
 d(m+1)=0.0
 do 666 i=2,m
 msi=ms(i)
 msm=ms(i-1)
 do 666 k=msm,msi
 r(k)=r(msm)+(k-msm)*delx(i)
 if(k.eq.msm) go to 777
 if(k.eq.msi) go to 888
 rp12(k)=r(k)+delx(i)/2.0
 rm12(k)=r(k)-delx(i)/2.0
 fp(k)=f(i)
 fm(k)=f(i)
 sigp(k)=sigma(i)
 sigm(k)=sigma(i)
 dp12(k)=d(i)
 dm12(k)=d(i)
 go to 666
777 rp12(k)=r(k)+delx(i)/2.0
 rm12(k)=r(k)-delx(i)/2.0
 fp(k)=f(i)

 22

 fm(k)=f(i-1)
 sigp(k)=sigma(i)
 sigm(k)=sigma(i-1)
 dp12(k)=d(i)
 dm12(k)=d(i-1)
 go to 666
888 rp12(k)=r(k)+delx(i+1)/2.0
 rm12(k)=r(k)-delx(i)/2.0
 fp(k)=f(i+1)
 fm(k)=f(i)
 sigp(k)=sigma(i+1)
 sigm(k)=sigma(i)
 dp12(k)=d(i+1)
 dm12(k)=d(i)
666 continue
! Computation of sub-diagonal, diagonal, super-diagonal, and source terms
 l=nt-1
 do i=2,l
 delr(i)=r(i+1)-r(i)
 a(i)=rp12(i)**nn*dp12(i)/delr(i)
 c(i)=rm12(i)**nn*dm12(i)/delr(i-1)
 b(i)=a(i)+c(i)+r(i)**nn*(sigp(i)*delr(i)+sigm(i)*delr(i-1))/2.0
 w(i)=r(i)**nn*(fp(i)*delr(i)+fm(i)*delr(i-1))/2.0
 end do
 write(11,15)
 write(*,15)
15 format(10x,'Sub-diagonal',10x,'Diagonal',10x,'Super-Diagonal',5x,'Source Term')
 do i=1,l
 a(i)=-a(i)
 c(i)=-c(i)
 write(11,16)c(i),b(i),a(i),w(i)
 write(*,16)c(i),b(i),a(i),w(i)
 end do
16 format(4(10x,E10.3))
! Formation of matrix of coefficients A
 do i=1,l
 do j=1,l
 if(i.eq.j) go to 116
 if(i.eq.j+1) go to 117
 if(i.eq.j-1) go to 118
 biga(i,j)=0.0
 go to 119
116 biga(i,j)=b(i)
 go to 119
117 biga(i,j)=c(i)
 go to 119
118 biga(i,j)=a(i)
119 continue
 end do
 end do
! Coefficients matrix is written as needed by uncommenting the following statements
! write(*,*) biga
! do i=1,l
! write(11,17)(biga(i,j),j=1,l)
! write(*,17)(biga(i,j),j=1,l)
!17 format(5E12.4)
! end do
121 iff=1
 c(1)=0.0
 a(l)=0.0
 lamda1=1.0

 23

 do i=1,l
 phi1(i)=1.0
 end do
 kk=1
123 continue
 do i=1,l
 s1(i)=w(i)*phi1(i)
 psi(i)=s1(i)/lamda1
 end do
! Solve tridiagonal linear system of equations
 call tridag(iff,l,c,b,a,psi,phi2)
 phim=0.0
 do i=1,l
 if(phim.lt.phi2(i)) phim=phi2(i)
 end do
 do i=1,l
 phi1(i)=phi2(i)/phim
 end do
 do i=1,l
 s2(i)=w(i)*phi2(i)
 end do
 sumt=0.0
 sumb=0.0
 do i=1,l
 sumt=sumt+s2(i)*s2(i)
 sumb=sumb+s2(i)*psi(i)
 end do
 lamda2=sumt/sumb
! Calculate relative error for use as convergence parameter
 rat=abs((lamda1-lamda2)/lamda1)
 if(rat.lt.eps) go to 122
 lamda1=lamda2
 kk=kk+1
 go to 123
122 continue
 write(11,18)kk
 write(*,18)kk
18 format('The number of outer iterations is:',I5)
 write(11,19)
 write(*,19)
19 format(3x,'Distance',1x,'Normalized Flux')
 do i=1,l
 write(11,20)r(i),tab,phi1(i)
 write(*,20)r(i),tab,phi1(i)
 end do
 do i=1,l
 write(12,20) r(i),TAB,phi1(i)
 end do
20 format(f10.3,a1,f10.3)
 write(11,21)
 write(*,21)
21 format('Eigenvalue, Effective multiplication factor, k(eff).')
 write(11,22)lamda2
 write(*,22)lamda2
22 format(f12.4)
 end
!
 subroutine tridag(ifirst,ilast,a,b,c,d,v)
! This procedure solves a system of simultaneous linear equations with a tridiagonal
! coefficient matrix.
! a = array of sub-diagonal coefficients

 24

! b = array of diagonal coefficients
! c = array of super-diagonal coefficients
! d = source vector
! v(if) ... v(l) = final solution vector
! ifirst = first equation number
! ilast = last equation number
! beta, gamma = intermediate arrays
 dimension a(100),b(100),c(100),d(100),v(100),beta(201),gamma(201)
! Generate intermediate arrays beta an gamma
 beta(ifirst)=b(ifirst)
 gamma(ifirst)=d(ifirst)/beta(ifirst)
 ifirstp1=ifirst+1
 do i=ifirstp1,ilast
 beta(i)=b(i)-(a(i)*(c(i-1)/beta(i-1)))
 gamma(i)=(d(i)-a(i)*gamma(i-1))/beta(i)
 end do
! Computation of final solution vector
 v(ilast)=gamma(ilast)
 last=ilast-ifirst
 do k=1,last
 i=ilast-k
 v(i)=gamma(i)-(c(i)*(v(i+1)/beta(i)))
 end do
 return
 end

 25

